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The sensitivity of agricultural productivity to climate has not been
sufficiently quantified. The total factor productivity (TFP) of the US
agricultural economy has grown continuously for over half a century,
with most of the growth typically attributed to technical change.
Many studies have examined the effects of local climate on partial
productivity measures such as crop yields and economic returns, but
these measures cannot account for national-level impacts. Quantify-
ing the relationships between TFP and climate is critical to un-
derstandingwhether current US agricultural productivity growthwill
continue into the future. We analyze correlations between regional
climate variations and national TFP changes, identify key climate
indices, and build a multivariate regression model predicting the
growth of agricultural TFP based on a physical understanding of its
historical relationship with climate. We show that temperature and
precipitation in distinct agricultural regions and seasons explain
∼70% of variations in TFP growth during 1981–2010. To date, the
aggregate effects of these regional climate trends on TFP have been
outweighed by improvements in technology. Should these relation-
ships continue, however, the projected climate changes could cause
TFP to drop by an average 2.84 to 4.34% per year under medium to
high emissions scenarios. As a result, TFP could fall to pre-1980 levels
by 2050 even when accounting for present rates of innovation. Our
analysis provides an empirical foundation for integrated assessment
by linking regional climate effects to national economic outcomes,
offering a more objective resource for policy making.
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Along-standing challenge of climate impact assessment has been
to determine how climate has influenced the agricultural

economy, and how its effects may change in the future. Climate
affects agriculture regionally, depending not only on local weather
factors but also on specific crops, livestock, and related goods and
services, as well as agricultural systems, infrastructures, and inter-
ventions. Aggregating these disparate and potentially contradictory
regional impacts into larger-scale economic outcomes is particularly
difficult because the ultimate consequences are influenced by market
fluctuations and policy incentives. As a result, understanding of how
climate has influenced the agricultural economy is limited, making
projection of the future under climate change extremely uncertain.
This uncertainty is reflected in the lack of consensus regarding

the overall impacts of climate change on US agriculture (1, 2). In
general, studies follow two approaches, both focusing on partial pro-
ductivity measures or local economic indicators. One approach seeks
to determine the impact of weather shocks on common partial pro-
ductivity measures such as crop yield (3–7). These studies tend to show
that weather variability substantially influences local crop production.
The other approach aims to identify the impact of weather patterns on
economic returns to farmers in the form of land values or measured

profitability. Some such studies document small impacts (8, 9), and
others document more significant effects (10, 11). However, because
both these approaches are based on local climate effects, select agri-
cultural products, and/or short time frames, they have limited ability to
characterize how climatic factors may influence overall US agricultural
performance. Long-term, national studies are needed to understand
the aggregate climate effects on agricultural growth patterns in the
past, and to more credibly project future changes.
Currently, impact analyses of the potential economic conse-

quences of climate change often refer to results from integrated
assessment models (IAMs), which use functions that translate the
impacts of temperature increase into economic damages. However,
these damage functions depend on assumptions about the link be-
tween climate and economy that are difficult to verify. Consequently,
they vary substantially between different models (12), and have been
criticized as subjective (13–15). Improving these functions, and thus
the credibility of the projections, requires understanding the con-
nection between regional climate and national productivity.
We therefore take an objective, upscaling approach to quantify

the effects of 60 y of regional variations in climate variables across
the continental United States on the national total factor pro-
ductivity (TFP) of agriculture. TFP represents the ratio of measured
output (such as crops, livestock, and goods and services) per unit of
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measured inputs (such as land, labor, capital, and resources), and
thus is an important indicator of the efficiency of the agricultural
system (16). Growth in productivity (i.e., growth not accounted for
by increases in inputs) has been a primary driver of the US agri-
cultural economy over the last century. Total inputs to US agri-
culture have remained relatively constant, whereas aggregate
agricultural output grew at an average rate of 1.50% per year from
1948 to 2011 (17, 18). Consequently, TFP has grown at an annual
rate of 1.43% since 1948 (19). Thus, the United States is now
getting roughly 2.5 times as much agricultural product from the
same resource base as it was in 1948. Typically, this increase in
productivity is attributed to technological innovation (18–23) and,
in particular, to the sustained US policy of public investment in
research and development (24, 25). However, this interpretation
does not factor in any climate influence on TFP.
The remarkable long-term growth of TFP in recent decades has

overshadowed substantial year-to-year fluctuations (Fig. 1) that
have not been well explained. These fluctuations are primarily due
to changes in aggregate output emerging from variability in exog-
enous shocks such as weather, market, and policy fluctuations. Until
∼1970, US agriculture seemed to manage such shocks well, main-
taining relatively consistent TFP growth from year to year. Since
then, however, TFP growth rates have been highly variable. Some of
this enhanced variability is explained by specific exogenous events,
such as the 1973 energy crisis and the US government’s 1983
Payment-In-Kind (PIK) program. On the other hand, some of the
variability has been casually associated with extreme weather events
such as severe droughts and floods in key agricultural areas (26).
For example, TFP rates declined sharply in 1993, when persistent
heavy rain and thunderstorms caused drastic flooding in the Mid-
west. Although these events undoubtedly caused substantial damage
to agriculture, there has been little quantification of the actual re-
lationships between TFP growth and weather fluctuations or to
explain their underlying physical mechanisms. Because temperature
and moisture are external physical inputs that affect both plant and
animal growth, variability in agricultural production is naturally
connected to climatic drivers (27). If climate adversely impacts

agricultural production, there seems little doubt that it will man-
ifest itself in either diminished or increasingly variable TFP
growth. Understanding that impact is essential for designing ag-
ricultural policies to help maintain and promote sustainable US
agricultural growth.
This study examines the impact of climate patterns on overall US

agricultural performance, based on long records of the most updated
data. We use TFP change from the previous year (TFPC) as an
indicator of economic growth. Examining TFPC rather than TFP
itself allows us to avoid stationarity issues in regression analysis and
focus on its relationship with interannual climate variations. Addi-
tionally, from a policy perspective, it is important to understand the
variability of TFP around the long-term trend. TFPC has been tra-
ditionally attributed to technological improvement, but we hypoth-
esize that climate has also been a significant factor in explaining its
variability. We therefore assume that TFPC is composed of a con-
stant growth term representing long-term trends and a variable term
representing interannual fluctuations. The growth term includes
technological contributions and other long-term factors such as the
effects of adaptation and CO2 fertilization (increased photosynthesis
due to higher atmospheric CO2 concentrations) on crop production.
We currently cannot separate or specifically quantify these trends,
but treat them together as a constant. The variable term represents
the effects of interannual changes, primarily due to climate anom-
alies, but also encompassing short-term impacts such as agricultural
and trade policies.
We first analyze the correlation of national TFPC with seasonal

and geographic distributions of climate variables, focusing on daily
average surface air temperature (TA) and daily cumulative
precipitation (PR) anomalies, to identify which have important
and statistically significant relationships, and when and where
these relationships exist. We then objectively define a set of key
regional climate indices that have statistically significant rela-
tionships with TFPC. We attempt to explain the biophysical
mechanisms associated with these relationships, and, finally,
develop a multivariate regression model to predict national
aggregate agricultural TFP growth.

Fig. 1. Evolution of US agricultural TFP. The productivity itself (TFP: blue, scale on right) and its change from the precious year (TFPC: black, scale on left)
during 1951–2010, as well as TFP’s linear trend estimates for 1951–1980 and 1981–2010 (red dashed). The measured TFP values are relative to year 2005 (= 1),
as in the raw data.
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Results

Regional Climate Correlations to National TFPC. Fluctuations in TFP
were relatively minor from 1951 to 1980, but became much
stronger from 1981 to 2010, even as the overall TFP trend in-
creased (Fig. 1). These two periods also exhibited radically dif-
ferent TFPC−climate relationships. In 1951–1980, TFPC had little
response to climate variability, whereas, in 1981–2010, there was a
drastic increase in the number of significant correlations during
the growing seasons, suggesting that TFPC became much more
sensitive to climate. (Comparisons of correlations by each period are
given in National Percentages of Significant Correlations and Fig. S1.)
We examined the geographic distribution of the 30-y correlations to
identify key areas where regional climate indices significantly affect
national TFPC. These key regions are outlined and labeled in Fig. 2,
which depicts TFPC correlations to TA and PR anomalies by pe-
riod and season. For convenience, relationships are described below
in terms of positive TFPC or as TFP increases. Analogous rela-
tionships can be inferred for negative TFPC.
In 1951–1980, warmer autumns over Texas and across the

Northeast through the Midwest and mid-Atlantic regions were as-
sociated with higher measured agricultural productivity (Fig. 2D). In
Texas, cotton was the most valuable crop during this period. Cotton
yields are higher in warmer autumns or longer harvesting seasons,
and less precipitation also facilitates harvesting. Similarly, in the
Midwest, Northeast, and mid-Atlantic regions, warmer autumns
mean an extended growing season that aids harvest and allows more
crops (especially corn and soybeans) to achieve full maturity and
productivity. On the other hand, cooler springs in Nevada, Utah,
Arizona, and the coastal regions of California and New Mexico
were more productive (Fig. 2B). Cooler springs in these regions

reduce soil moisture losses and irrigation needs, increasing available
moisture for the subsequent summer months when crop needs are
greatest. In addition, some regions had positive correlations with
summer precipitation, but these were scattered across several cen-
tral and southeastern states (Fig. 2G). Increased water availability
raises crop yields, especially over dry lands where irrigation was
previously less common than it currently is.
TFPC−climate correlation patterns in 1981–2010 were dras-

tically different. In summer, productivity growth was associated
with cooler temperatures over the US agricultural heartland
(Midwest, Northeast, mid-Atlantic, and surrounding areas), but
with warmer temperatures in California and its border areas
(excluding much of the Central Valley) (Fig. 2K). Growing evi-
dence indicates that hot temperatures in excess of optimal
thresholds for growth can be very harmful to major grain crops
such as corn, soybeans, and wheat (3–5, 28, 29). Heat stress can
also negatively affect confined animal (dairy, beef, swine, and
poultry) operations, increasing production costs and capital ex-
penditures (30), reducing meat and milk production, and low-
ering animal reproduction rates (31). The situation in California
is complicated by the large variety of crops, which leads to a wide
range of dependences on seasonal climate conditions. For ex-
ample, cotton, grapes, lettuce, and tomatoes are more productive
in a warmer spring; strawberries and walnuts favor a cooler au-
tumn; and hay yields are higher in a drier winter (32). In the
Central Valley, higher temperatures are less beneficial, as sum-
mers are already warm (Fig. 2K), but they may have been fa-
vorable for the dramatic expansion of the wine industry in the
northern areas in the late 20th century. These dependences may
explain the TFPC correlation patterns in California and other

Fig. 2. Geographic distributions of TFPC−climate correlations. Regions defining key climate indices are outlined and labeled. In 1951–1980, TFPC correlated
with cooler springs in CX (B), warmer autumns in NA and TX (D), and dryer autumns in TX (H), as well as scattered areas of TA and PR (A, C, and G). Winter and
spring PR in 1951–1980 are not shown, as there were no significant correlations; they are replaced by 1981–2010 winter minimum temperature (E) and spring
maximum temperature (F). In 1981–2010, TFPC correlated to cooler winters in NL (I), warmer springs in SW (J), cooler AH and warmer CN summers (K), and
cooler autumns in CX (L), as well as to dryer winters in CY (M), dryer springs in CA (N), wetter summers in TZ (O), and scattered regions in autumn (P).
Statistically insignificant correlations between ±0.361 are not depicted.
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southwestern states (Fig. 2 J−N): spring (+), summer (+), and
autumn (−) TA, and winter (−) and spring (−) PR.
Two additional differences distinguished 1981–2010 from the

earlier period. First, areas where summer precipitation positively
correlated with TFPC were no longer scattered across the
country, but were concentrated along an arc stretching from the
Northeast through the mid-Atlantic to the Texas High Plains
(Fig. 2O). This arc rests in the transition zone between the Corn
and Cotton Belts, neither of which exhibited strong correlations,
likely because rainfall is generally abundant in the Corn Belt and
water deficits in the Cotton Belt are offset by wide application of
irrigation. The transition zone, on the other hand, consists of
heavy grazing lands where pasture depends mainly on rainfall
without irrigation support. Increased summer rainfall in the re-
gion may increase forage grass yields or reduce feed stock prices,
increasing TFP for livestock production. Second, TFPC was
negatively correlated with winter TA in broad areas straddling
the Northeast and Lake States (including Ohio, Indiana, Michigan,
and northern Wisconsin) (Fig. 2I). In these areas, early growing
season soil moisture derives from winter snowfall that melts slowly
during the spring. Warmer winter temperatures lead to snow melt
and runoff throughout winter, depleting soil moisture to begin the
growing season. Coupled with hotter summers, this process can
dramatically reduce crop productivity. Most of these areas had no
correlation with winter temperatures in 1951–1980. Coincidentally,
in that earlier period, similar areas showed positive correlations
in autumn.
To determine the evolving effects of climate variation, we

performed a running correlation analysis over 20-y periods.
These TFPC−climate correlation patterns, in general, reflect a
clear transition between those observed in 1951–1980 and 1981–
2010 (details are given in Evolving Effects of Climate Variation
and Fig. S2). The results reinforce the finding that climate
dependence significantly increased after 1980. In recent de-
cades, positive temperature correlations noticeably weakened
over time, and negative correlations strengthened. These
changes suggest that the impacts of climate on TFPC became

increasingly negative as agricultural production passed optimum
temperature thresholds.
In summary, US agricultural TFPC correlated significantly with

both temperature and precipitation in certain seasons over broad
regions. These regions are all areas of major US agricultural
production, including crops, livestock, and nursery products. Most
of the observed statistical relationships are biophysically intuitive
and seem to correspond with current understanding of how cli-
mate influences US agricultural production. We used seasonal
temperature and precipitation averages over 10 significant regions
(AH, TZ, SW, NL, CX, CN, CY, CA, NA, and TX, as defined in
Fig. 2) to construct indices of key regional climate factors that
affect TFPC. Based on these climate indices, we developed re-
gression models for each period to capture TFPC−climate rela-
tionships. Model 1 simulates 1951–1980, and model 2 represents
1981–2010. We then compared their simulations to historical re-
cords to establish model creditability and determine the role of
climate in US agricultural productivity.

Historical TFPC−Climate Dependence Simulations. Model 1 explains
almost 50% of the total TFPC variance from 1951 to 1980, while
model 2 represents around 70% of variance from 1981 to 2010.
This finding matches well with previous estimates that, from
1979 to 2008, more than 60% of yield variability can be explained
by climate variability (33); it also suggests that agricultural pro-
ductivity has become more sensitive to climate in recent years.
Closer agreement between modeled and measured TFPC repre-

sents a more significant climate contribution. In the first period (1951
−1980), TFPC fluctuations increased and model−measurement cor-
respondences became tighter after ∼1971 (Fig. 3). The increased role
of climate was likely due to the accelerated growth of crop pro-
duction, because demand for crop exports surpassed that for livestock
in the mid-1970s (18) (Changes in Sectoral Contributions to TFP and
Fig. S3). As crop production is generally more sensitive to adverse
weather events than livestock production, TFPC containing a larger
contribution from crops fluctuates more and corresponds more
closely to climate variations. Close model−measurement agreement

Fig. 3. Measured and simulated TFPC variations. The simulations include those by model 1 for 1951–1980 and by model 2 for 1981–2010. Also shown are the
correlation coefficient (R) of the simulated with measured TFPC, the p value of the regression, and the explained, residual, and total variance for each period.
The shaded area represents uncertainty in the 1981–2010 regression model, showing the 25th to 75th percentile range of submodel simulations when using
28-y bootstrap samples.
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continued into the second period (1981−2010), indicating that
agricultural TFPC became more strongly dependent on re-
gional climate variations.
Larger departures of modeled from measured TFPC imply more

influence from external nonclimate factors. The relatively large
departures early in the second period likely stem from the signifi-
cant impact of policy interventions in the early 1980s on measured
agricultural productivity. In particular, the large swing in model
departures between 1983 and 1984 is mainly associated with the
1983 PIK program, which encouraged farmers to reduce crop
production in return for in-kind payments from government stores.
The immediate effect was a drastic reduction in productivity (by
close to 15 to 16%) as production fell but the input base remained
relatively fixed. Productivity then snapped back and grew by almost
the same amount immediately afterward, as output returned to
normal with a relatively fixed input base. TFP growth skyrocketed
as a result. Similarly, a large departure in 1986 may have been
related to the Food Security Act of 1985 that reduced the influence
of government price supports in favor of a more market-oriented
farm policy (18). Since this policy-driven period, commodity prices
have been largely based on market supply and demand.
Another significant departure began around 1998, with notice-

able phase shifts in 2002 and 2007. It is possible that US agriculture
was significantly changed by the production of oil crops, which saw
the highest average growth rate among all crops from 1998 onward
(18). Soybeans are the second-most important US field crop after
corn. They transitioned from being overwhelmingly used for animal
feed to accounting for ∼90% of total US oilseed production. This
shift may have altered crop contribution to TFPC. In addition,
recent mandate-driven demand for biofuels resulted in the con-
version of almost 40% of the US corn crop to energy production,
and so shifted land use from food to energy (34) and contributed to
high crop prices. Further exploration is needed to determine the
actual causes of these departures.
The United States has a long history of heavy public in-

vestment in agricultural research and development, which has

contributed to sustained US agricultural productivity growth and
an increasing supply of US agricultural products (23). Both
farmers and consumers have reaped the benefits. Sustained in-
vestment in research and development is undoubtedly critical to
maintaining long-term growth. However, variability in agricul-
tural TFP growth, which consists almost entirely of variability in
aggregate output growth, is also critical to sustainability. Our
findings suggest that this variability over 1981–2010 is closely
linked to climate variability in important crop-producing areas.
So far, the aggregate TFPC effects of regional climate trends

have been relatively small. Observed trends in the climate indices
have not all been significant, and their positive and negative
effects on TFPC have partially canceled. Using model 2, we
calculated that the climate trends have caused a net TFP loss of
0.0003846 per year, which has been outweighed by a technolog-
ical gain of 0.014865 per year. Thus, TFP has continued to grow at
a significant rate. However, these key crop-producing areas are
projected to see significant changes in climate in the coming years,
including increased warming trends, decreased water availability,
and enhanced extremes (28, 35). If the measured statistical rela-
tionships reflect reality, these changes could have important con-
sequences for the long-term TFP growth of US agriculture.

Future TFP Change Projections. Although the impact of climate on
US agricultural productivity seems relatively weak in the 1951–
1980 period, TFPC sensitivity to climate variables has greatly
increased in more recent times. This increase was accompanied
by substantial changes in regional and seasonal correlation pat-
terns. If the behavior observed in 1981–2010 represents the
contemporary norm for TFPC responses to regional climate
variations, model 2 can be used to evaluate potential TFPC re-
sponses to projected future climate changes. This analysis as-
sumes that the effects of technological advances and adaptation
practices remain the same as in 1981–2010. In other words, it
presumes that agricultural producers would respond to future
climate changes as they currently do to interannual climate

Fig. 4. Projected TFP variations through 2050. The ensembles are based on all available future climate realizations for both RCP4.5 and RCP8.5. The 25th and 75th
percentiles represent uncertainty due to variance in climate projections. The measured TFP values in 1980 and 2010 are marked for reference. Submodel simulations
were used to estimate uncertainty due to regression; the thin line shows the ensemble mean, and the dashed lines represent its 25th to 75th percentile range.
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anomalies. The only differences modeled are future climate
changes over these agriculturally responsive regions.
To assess climate change impacts on future TFPC, we adopted

the Coupled Model Intercomparison Project Phase 5 (CMIP5)
simulations for two representative concentration pathways:
RCP4.5 (medium) and RCP8.5 (high), and derived changes to the
climate indices in model 2. A description of the CMIP5 simulation
data used is given in CMIP5 Climate Simulations. Under both
RCPs, TFP is projected to decline continuously, with faster rates
after ∼2025 (Fig. 4). To determine key contributors to the future
US TFP declines, we performed a factor analysis of model 2 based
on projected changes in the regional climate indices, including a
range of uncertainties depending on climate sensitivity and RCP
forcing. The top four contributors to the decline were all related to
the climate warming trend. The largest was the projected warmer
summers in the Midwest (region AH), the second was the warmer
autumns in scattered regions across the Southwest (CX), the third
was the warmer springs in the Southwest (SW), and the fourth was
the warmer summers in California and Nevada (CN). The fifth
contributor was the projected decreasing amount and increasing
variability of summer precipitation in the transition zone between
the Corn and Cotton Belts (TZ). Details on the fraction of
modeled variance each of these factors contribute, as well as ex-
planations of their tendencies, are given in Key Contributors to the
Future US TFP Declines.
Because the effects of technological advances, agricultural

practices, and long-term factors such as CO2 fertilization are
treated as a constant, the modeled TFP decline represents the
penalty arising solely from projected climate changes over the key
agricultural regions. Using the ensemble mean projection from
2010 to 2040, the climate penalty will reduce TFP by ∼2.84% per
year under RCP4.5 and 4.34% per year under RCP8.5, both larger
than the measured TFP growth rate in recent decades. The rates
vary significantly due to uncertainty in climate projections, but
they show a strong increase over time in both scenarios (Projected
Rate and Uncertainty of Future TFP Loss and Fig. S4). This penalty
must be distinguished from projected decreases in crop yields,
because yield and productivity are physically different measures,
and the scope and methodology of our study is inherently different
from past yield studies (Differences Between Projections of
Yield and Productivity).
Thus, if technological advances and other adaptations to

climate-driven change merely keep pace with recent historical
rates, the average climate penalty under RCP4.5 will cause TFP
to lose, by ∼2035, all of the gains achieved from 1981 to 2010. To
overcome this loss, the effect of technological advances would
have to double to sustain US agricultural productivity at the
current level. RCP8.5 creates a larger penalty but only hastens
the total loss of accumulated TFP growth by ∼3 y. Under either
RCP, the projected climate penalty will substantially reduce US
agricultural productivity in the coming decades.
These TFP projections must be interpreted in light of limita-

tions in the model’s explanatory ability, factors not considered in
the model creation, and uncertainties inherent in the climate
projections and regression model. First, the model itself de-
scribes ∼70% of measured TFPC variance, and the rest remains
unpredictable. Because the model is constructed by linking ob-
served regional climate anomalies to measured economic re-
sponses, it may no longer be applicable if future climate changes
significantly exceed the magnitude of historical anomalies (thus
TFP appears to become negative at the end of the simulated
period in Fig. 4). Second, the model does not incorporate
several factors, some that may decrease climate’s impact on
TFP, and others that could further enhance it. These factors
include the effects of adaptation and regulation, evolving cli-
mate sensitivity, and reductions in ability to compensate for
climate extremes using processes such as irrigation (Sources of
Modeling Uncertainty).

Finally, there is a large degree of modeling uncertainty. Most of
this uncertainty arises from climate projections, not only because
of forcing differences between the two RCPs but also because of
climate sensitivity variations among CMIP5 models. The total loss
of the US agricultural productivity gained in 1981–2010 is pro-
jected to occur as much as 6 y earlier or later than the ensemble
mean, respectively, by 25% higher or 25% lower climate sensitiv-
ities of the models. Meanwhile, 75% of the models project that US
agricultural TFP will drop to pre-1980s levels by ∼2040 or earlier if
the effects of technological advances and agricultural practices
continue as in the past (Fig. 4). These ranges are similar under both
RCPs. Further, 90% of models project this drop-off to occur by
2043 and 2051 for RCP8.5 and RCP4.5, respectively. Additional
uncertainty comes from sampling errors in the regression model,
which may alter the mean drop-off point by less than 1 y. Even
taking these uncertainties into account, all gains in US agricultural
productivity during 1981–2010 will likely be canceled by a climate
penalty before ∼2050 if significant adaptation does not occur.

Implications

As the world’s leading food commodity producer (20), it is critical
that the United States sustain its growth in the future to support
increasing domestic and global needs. Therefore, significant adap-
tation and technological advances are needed merely to maintain
the current US agricultural productivity level. Consequently, there is
an urgent need for policies to promote such changes, including large
increases in research and development investments that can influ-
ence technological advances, new regional production practices, and
major adaptation and mitigation strategies. These changes are
expected to be more cost-effective if made in the agriculturally re-
sponsive or climate-sensitive regions identified above.
Although the United Nations’ 2015 Paris Agreement set the stage

for global action to limit climate change impacts, adaptation and
mitigation strategies must be prioritized based on credible knowledge
of regional impacts in all sectors. These strategies will be driven by
national climate policies, which must be based on a clear un-
derstanding of climate impacts on overall economic growth. Strategy-
critical information is mainly drawn from IAMs, which typically use a
production function with capital and labor as inputs multiplied by a
TFP growing factor at a specified rate, and then reduce the output
with climate damage function (2). However, such functions vary
greatly between different models, and have been criticized for relying
on hard-to-validate assumptions about climate−economic linkages
(12–15, 36). Our study offers an objective approach to understand
the climate−productivity relationship and, in particular, to determine
a credible climate damage function for use in IAMs. This approach
will improve assessment of agricultural policy responses to global
climate change operating at local levels.

Materials and Methods
TFPC−Climate Correlation Analyses. We used the US Department of Agriculture’s

national-level TFP estimates for 1948–2011 (18) to capture the impacts on

aggregate output and aggregate inputs. The geographic distributions of climate

data are from the latest observational analysis of PR, TA, and daily minimum and

maximum surface air temperature (TN, TM); they are available from 1895 to

2013 on 0.26° grids over the contiguous United States, and were developed by

the National Climatic Data Center from measurements at over 12,000 stations.

We analyzed the correlation between the TFPC yearly time series and indi-

vidual climate variables at every US land grid for each season of two separate 30-y

periods, 1951–1980 and 1981–2010. The location-wise correlations measure the

temporal correspondences between TFPC and seasonal climate interannual

variations, and the contrast between the periods measures their decadal

changes. We focused on correlations larger than +0.361 or smaller than –0.361,

which are statistically significant at the 95% confidence level assuming yearly

independence. We also examined TFPC−climate correlations over five 20-y pe-

riods (1951−1970, 1961−1980, 1971−1990, 1981−2000, and 1991–2010) to test

the robustness of the results and examine their evolution over time.
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TFPC−Climate Regression Models. For each season in each region, we con-
structed the climate indices by averaging a specific variable (TA or PR) over all
of the grids containing statistically significant (positive or negative) corre-
lations. As outlined in Fig. 2, there are 10 seasonally changing regions of
significant TFPC−climate correlations, eight in the 1981–2010 period, and
four in the 1951–1980 period (two are found in both periods). For 1981–
2010, the climate indices are summer TA in the agricultural heartland (AH);
summer PR in the arc of the transition zone (TZ); spring TA in the Southwest
(SW); winter TA in the Northeast and Lake States (NL); autumn TA across
California, Oregon, Nevada, Arizona, and New Mexico (CX); summer TA in
California and Nevada (CN); winter PR in southern California, Arizona, and
western NewMexico (CY); and spring PR in California (CA). For 1951–1980, the
climate indices are autumn TA in the expanded region across the Northeast
through Midwest and mid-Atlantic (NA), spring TA across CX, and autumn TA
and PR in Texas (TX). We define winter as December−January−February (DJF),
spring as March−April−May (MAM), summer as June−July−August (JJA), and
autumn as September−October−November (SON).

For each of these seasonal−regional climate indices, yearly anomalies
were first calculated in reference to each period mean, and then each period
was subject to a regression analysis with TFPC. As a first-order approxima-
tion, here we considered only linear, additive TFPC relationships with the
anomalies of the climate indices. The interdependences among the re-
sponsive climate indices, if any, were included in the stepwise multivariance
regression. Nonlinear effects, such as TA- or PR-squared and their product
terms, as well as influences from climate anomalies in the previous year(s),
were not considered, although both may have introduced uncertainty into
the fit model prediction due to an inflated error term.

Using the sameunits as for themeasured TFP data relative to year 2005 (= 1),
the stepwise regression model for 1951–1980 is

TFPC½1"= 0.006327 + 0.007573 ·TASON.NA − 0.009827 · PRSON.TX

− 0.007508 ·TAMAM.CX.
[1]

Model 1 fits measured TFPC for 1951–1980 with a correlation coefficient of
0.702 (P < 0.00044) and a SE of 0.014, explaining 49.34% of the total vari-
ance (0.010). The constant term measures the expected TFPC if the climatic
variables remain constant at the period mean. Therefore, it helps capture
the TFPC that is attributable to other factors such as technical change, ad-
aptation, and innovation. The remaining terms in the fitted regression es-
timate the impacts of regional climate variations. The three climate indices
contribute ∼27.64%, 11.59%, and 10.11% of the total variance explained.
The fourth climatic index, TASON.TX, is not included in the model because it
has strong cross-correlations with TASON.NA (+0.551) and PRSON.TX (−0.540),
and so independently contributes close to zero variance.

Similarly, the regression model for 1981–2010 is

TFPC½2"= 0.014865 − 0.010050 ·TAJJA.AH − 0.023636 · PRDJF.CY

+ 0.035730 · PRJJA.TZ − 0.011561 ·PRMAM.CA

− 0.014439 ·TASON.CX − 0.011849 ·TAMAM.SW

+ 0.004774 ·TAJJA.CN.

[2]

Model 2 fits measured TFPC for 1981–2010 with a correlation coefficient of
0.839 (P < 0.00035) and an SE of 0.028, explaining 70.41% of the total variance

(0.058). Compared with 1951–1980, a greater number of significantly correlated

climate variables explain amuch larger fraction of TFPC variance, suggesting that

climate impacts on TFPC substantially increased in 1981–2010. The constant term

is ∼2.35 times larger than the value for 1951–1980, indicating that the role of

technological advances in US agricultural productivity growth was also consid-

erably enhanced in this period. The impacts from the seven climate indices, listed

in the equation in decreasing order, contribute ∼38.91%, 14.41%, 5.82%, 4.90%,

4.41%, 1.60%, and 0.36% of the total variance explained. The eighth climatic

index, TADJF.NL, is not included in the model because it has strong cross-

correlations with PRJJA.TZ(−0.470) and TAJJA.AH(+0.419), and so independently

contributes almost zero variance.

To determine the effects of sampling errors and examine whether any 1 y

or 2 y contributed heavily to the overall results, we created an ensemble of

870 bootstrap samples from the historical data during 1981–2010. This en-

semble included all possible 28-y subperiods, with the removal of any

combination of two different years without repetition, for a total of 30 ×

29 permutations. For each permutation, we repeated the stepwise re-

gression analysis and so constructed 870 submodels corresponding to model

2. The mean submodel projection differs from that of model 2 by less than a

year. We use the 25th and 75th percentiles of the TFPC ensemble of these

submodel simulations to represent the range of regression model un-

certainty. This uncertainty is small (Fig. 3) and, as shown in Fig. 4, generally

widens the spread of future projections by no more than 1 y to 2 y.

To check the robustness of the stepwise regression and avoid possible

overfitting, we additionally conducted lasso regressions for both time periods,

including all climate indices and minimizing the residual sum of squares. The

results differed little from those of the stepwise regressions (Lasso Regression

Analysis), suggesting that our models are robust.
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National Percentages of Significant Correlations

The percentage of significant TFPC−climate correlations differs
radically before and after 1980 (Fig. S1). As climate indicators, we
used PR, TA, TN, and TM. In 1951–1980, autumn temperatures
correlated most significantly to TFPC, with positive correlations
over 28.2% (TA), 21.7% (TN), and 15.2% (TM) of grids. Spring
temperatures showed negative correlations in fewer areas, with
significant correlations in only 11.4% (TA), 9.5% (TN), and 5.1%
(TM) of grids. Few areas saw TFPC−temperature correlation in
summer or winter. A negligible number of grids had opposite
correlations (negative autumn and positive spring). Few grids
showed any correlation between TFPC and precipitation. Pre-
cipitation had positive effects for only 4.0% of grids in both
summer and autumn, and exhibited negative effects for an addi-
tional 3.5% of grids in autumn. The general lack of significant
correlations suggests that TFPC in this period has little sensitivity
to climate variability, except that warmer autumn temperatures
are associated with measured productivity increases.
The TFPC−climate relationships changed substantially in 1981–

2010. Summer temperatures had the largest percentage of corre-
lated grids, with negative correlations for 36.7% (TA), 31.7%
(TN), and 33.9% (TM), with an additional 5.1 to 6.1% showing
positive correlations. Spring temperatures showed the second-
largest percentage, with positive correlations over 23.0% (TA),
12.0% (TN), and 26.5% (TM), and no negative correlations. Thus,
cooler summer and warmer spring temperatures were associated
with measured agricultural productivity increases in many loca-
tions. Winter and autumn had modest numbers of grids with
negative TFPC−temperature correlations, respectively, 11.0%,
18.6%, 6.9% and 17.6%, 8.7%, 15.1%, and no positive correla-
tions. Although TA remained the largest player in summer and
autumn, TM became more important in spring, and TN was more
influential in winter. Additionally, precipitation showed a more
significant impact in this later period, with 9.1% of grids having
positive correlations in summer and 10.4% (7.4%) of grids
showing negative correlations in winter (spring). The drastic in-
crease in the number of significant correlations during the growing
seasons suggests that TFP sensitivity to climate is radically en-
hanced in 1981–2010 compared with the earlier period.
Because the three temperature variables are highly correlated,

our subsequent analyses focused on TA, which generally exhibited
larger percentages of significance. As shown in Fig. 2, the cor-
relation patterns with TA were mostly inclusive of those with TN
and TM. The two exceptions were winter TN and spring TM,
which played larger roles than TA in 1981–2010. Given negligible
correlations with winter and spring PR in 1951–1980, Fig. 2 in-
stead shows correlations with winter TN and spring TM in 1981–
2010. Even in these two cases, TA clearly captured the core
pattern of the correlation.

Evolving Effects of Climate Variation

Fig. S2 shows the percentage of significant TFPC-climate cor-
relations in each 20-y period, in running 10-y increments. These
reveal a clear transition between the correlation patterns before
and after 1980 (as depicted in Fig. S1 and described in National
Percentages of Significant Correlations). For example, negative
temperature correlations in summer increased sharply between
1971–1990 and 1981–2000, and negative temperature correla-
tions in spring were entirely replaced by positive correlations
following the 1971–1990 period. One noteworthy pattern is that,
over recent decades, spring and summer positive temperature
correlations decreased, whereas summer negative temperature

correlations increased. This pattern suggests that temperatures
in agricultural regions may have started moving beyond the op-
timum temperature thresholds, with increasingly negative im-
pacts on TFPC. Precipitation changes were relatively small in
each period, except that, in 1991–2010, negative precipitation
correlations decreased in spring and winter, whereas positive
correlations increased in autumn.

Changes in Sectoral Contributions to TFP

Substantial changes in US agricultural economy between 1951 and
2010 likely affected the relationship between TFPC and climate.
TheUSDApartitions agricultural production into three categories:
crops, livestock, and farm-related goods and services. At the na-
tional level, the relative values of these sectors have shifted sig-
nificantly over time (Fig. S3). In particular, crop products became
more important in recent decades, at the cost of reducing the
contribution of livestock products. The growing reliance on crop
production likely caused TFPC sensitivity to increase, because
crops are generally more sensitive to weather than livestock. From
1951 to 1980, crops and livestock consistently reflected inverse
tendencies (such that, when one increased, the other decreased)
to maintain a total of ∼98% of the total value. After 1980, they
become less correlated, largely due to the increasing importance
of farm-related goods and services, which rose to between 2.5%
and 6.6% of total value in 1981–2010. The greater role of farm-
related goods and services may have also factored into the in-
creased climate sensitivity seen in the later period.

CMIP5 Climate Simulations

To represent future climate change, we chose CMIP5 simulations,
which were used in the fifth Assessment Report of the In-
tergovernmental Panel on Climate Change (37) and in the latest
National Climate Assessment (NCA) (38) of the US Global Change
Research Program. The CMIP5 archive contains simulations of the
20th century using best estimates of the temporal variations in ex-
ternal forcing factors (such as greenhouse gas and volcanic aerosol
concentrations, and solar output), as well as projections of the 21st
century following four RCPs: RCP2.6, RCP4.5, RCP6.0, and
RCP8.5, with the numbers indicating the 2100 radiative forcing
increase relative to preindustrial levels in watts per square meter.
Following the selection for the next quadrennial NCA on impacts,
vulnerability, and adaptation responses to climate change, we used
the projections under RCP4.5 and RCP8.5, which produce end-of-
century global mean temperature increases of 4.2 °F and 8.3 °F,
respectively, compared with a base period of 1901–1960 (38). To
depict the perceivable range of uncertainty due to climate sensi-
tivity, we used all available simulations based on these two RCPs,
for, respectively, a total of 86 and 54 realizations from 34 and
26 different coupled general circulation models (GCMs). We av-
eraged all realizations from each GCM into a single contri-
bution so that all GCMs were weighted equally in the final
ensemble. Because the historical simulations switch to future
projections after 2005, we chose 1976–2005 as the reference for
the present-day climate base, and calculated future climate
change as differences from this reference. These differences,
averaged over the key regions and seasons, were used as future
changes of the climate indices in regression model 2 to project
potential TFPC responses.

Key Contributors to the Future US TFP Declines

The largest contributor to the climate penalty is the projected
increase in summer temperature over the agricultural heartland
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(TAJJA.AH). This explains a fraction of the modeled total TFPC
variance in the range of 0.05, 0.13, and 0.41 for the 25th, 50th, and
75th percentiles, respectively, of all CMIP5 climate projection real-
izations. The second-largest contributor is the projected increase in
autumn temperature across California, Oregon, Nevada, Arizona,
and New Mexico (TASON.CX), with the corresponding fraction range
of 0.05, 0.14, and 0.26. The third-largest contributor is the spring
temperature in the Southwest (TAMAM.SW), with a range of 0.00,
0.02, and 0.14. The fourth-largest contributor is the projected in-
crease in summer temperature in California and Nevada (TAJJA.CN),
with a range of 0.02, 0.03, and 0.11. All four of these top factors are
related to the warming trend. The first two enhance the heat stress
on crop growth, and so reduce productivity. The third and fourth
have a reverse effect, possibly because warmer springs and summers
may favor regional agriculture such as wine grapes. Precipitation
comes in fifth, with the small projected decrease in amount and
increase in variability in summer along the arc in the transition zone
(PRJJA.TZ) contributing a range of 0.01, 0.02, and 0.05.

Projected Rate and Uncertainty of Future TFP Loss

The exact rate of TFP loss depends on the climate scenario used,
and has a wide spread due, primarily, to uncertainty in climate
projections. However, two patterns are evident under all sce-
narios: The future climate penalty reduces TFP at greater rates
than it has grown in recent decades, and the rate of loss increases
significantly over time.
Fig. S4 shows the projected TFP loss rate under RCP4.5 and

RCP8.5, including the mean rate and the range due to un-
certainty in climate and the regression analysis. Rates were cal-
culated as compound annual growth rates from 2010 to 2040, the
year by which 75% of models project a TFP drop off to pre-1980s
levels. Based on the ensemble mean, the climate penalty of
RCP4.5 will reduce TFP by ∼2.84% per year through 2040.
Given uncertainty in climate projections, as represented by the
25th and 75th percentile of model results, the loss rate may be
between 1.75% and 5.19% per year. The rate increases signifi-
cantly over time. From 2010 to 2020, the mean rate loss is 0.69%
per year, with the 75th percentile GCMs still showing slight TFP
growth. In 2020–2030, the loss rate rises to 2.40%, followed by an
even greater increase to 5.38% per year in 2030–2040. Using
870 28-y submodels that represent regression-based uncertainty,
rates are slightly higher, with average yearly losses of 2.97% from
2010 to 2040 (including climate-based uncertainty, the estimates
range from 1.48 to 5.60%).
Under the RCP8.5 scenario, the mean loss rate is 4.34% per

year, or between 2.52% and 13.32% per year considering the
effects of climate uncertainty. Again, this rate strongly increases
over time, moving from 1.37% per year in 2010–2020 to 3.26% in
2020–2030, and finally rising to 8.25% from 2030 to 2040. The
submodel results somewhat increase the mean projected TFP
loss to 4.55% per year, with a climate-based uncertainty range of
2.17 to 14.43%. We believe that the main model is a more re-
liable indicator, because it uses the entire available sample.
Under both RCPs, projections in the later years have additional

uncertainty. The model is built on observed regional climate
anomalies, which are linked to measured economic responses.
Once future climate changes exceed the magnitude of historical
anomalies, the observed past relationships may no longer hold
true, and the model may no longer be applicable. This may al-
ready be evident in the later years of our projection.

Differences Between Projections of Yield and Productivity

Past studies of yield, which is a partial productivity measure, are
difficult to compare even among themselves, because they vary
widely in respects such as location, crop type, reference period,
and climate projection used. We calculate that published values
in such studies tend to reflect crop yield losses in the range of
0.3 to 1.7% per year (5, 7, 39). Our results suggest that TFP loss

will be significantly higher than these yield loss projections,
likely due both to the inherent physical differences between
yield and productivity measures and to differences in our an-
alytical approach.
First, yield and productivity are equivalent only when there is a

single input and a single output. Yieldmeasures the returns per unit
land, and is thus a measure of land productivity. Productivity
measures consider all inputs required to generate all outputs, and
therefore may respond to climate very differently. For example,
farmers may respond adaptively to anomalously warm or dry years
by increasing their use of irrigation, or using sprinklers to cool their
livestock. To the extent that they are successful in mitigating the
effect of the heat, their yield would remain the same. Productivity,
however, would drop, because it considers the added aggregate
input of the increased water use, pumping, and electricity costs.
Similarly, adaptations, such as decreased acreage or increased use
of fertilizer, pesticides, or livestock medication, may mask yield
losses but will be reflected in decreased productivity. As a result,
TFP loss may be higher than yield loss, because it reflects the added
costs of maintaining yield under less beneficial climate conditions.
Second, our analytical approach differs significantly from those of

most partial productivity studies, which tend to be limited to certain
crops, conditions, and locations. For example, Schlenker and
Roberts (5) project the effect of temperature changes on corn, soy,
and cotton yields, whereas Lobell et al. (7) project the effect of
changing monthly temperature maximums and specific humidity on
Midwestern corn yields. In reality, crops are (and will be) affected by
combinations of these factors, which are often specific to particular
locations. Studies based on dynamic crop models (39, 40) may not
capture the actual response of the agricultural−economic system to
climate change. On the other hand, our TFPC model represents
the observed relationships between the US agricultural economy
and climate variations, and uses these as an analog to project fu-
ture productivity change. Additionally, many yield studies tend to
substantially overestimate the effects of carbon fertilization in their
crop models, compared with open-air field measurements (41).
This overestimation of the beneficial effects of carbon fertilization
may also contribute to the smaller yield loss projections.
Furthermore, productivity accounts not only for crop responses

to climate change but also for changes in livestock and
agriculture-related goods and services. We have found no studies
looking at the latter, and few studies looking directly at climate
effects on livestock yield, despite the fact that heat and humidity
have documented effects on livestock health and production (42).
Existing studies find a wide range of impacts, but these tend to be
strongly dependent on location, and are often estimated in terms
of individual animal responses [for example, the average milk loss
per dairy cow (43)], and do not account for larger-scale changes
such as altered herd sizes.
Further study is needed on the effects of climate on livestock and

other agricultural services, as well as its aggregate effects across all
sectors, which may not necessarily be linear. For example, livestock
yield is tied to feed availability. If crop yields drop below a certain
threshold, farmers may curtail livestock herds or on-farm processed
goods that become less economically viable. Other farm-related
goods and services that are tied to crop yields may have more er-
ratic response curves that include spikes and precipitous declines.
Decreases in crop yield will not be consistent across the nation, and
regions with sharper drops may exceed the thresholds that make
noncrop operations viable, forcing significant changes in these other
contributors to TFP.
Our results illuminate a noteworthy difference in productivity

and yield responses to climate, with productivity appearing to be
significantly more sensitive than previous studies have shown
yield to be. We have provided speculation as to the cause of this
disparity, but further research is needed to better understand the
relationship.
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Sources of Modeling Uncertainty

Several factors could influence climate’s ultimate effect on
TFPC, and should temper interpretation of the model results.
Some of these could amplify the TFPC penalty. Increased use of
irrigation (primarily in the Southwest, Midwest, and California)
during 1981–2010 has, so far, made regional productivity rela-
tively immune to precipitation changes. With many irrigation
water sources becoming less plentiful and sustainable (35, 44,
45), future TFP reductions could exceed model predictions.
Additionally, our analysis is based on the averaged TFPC−cli-
mate relationship observed in 1981–2010, and does not account
for evolving climate sensitivity with increasingly negative effects.
On the other hand, adaptation may potentially lower TFP losses

through improved technology or changed practices, but these remain
unpredictable and are not accounted for by our model. Likewise, we
do not consider regulatory effects, which could potentially impact
TFP by influencing the quantities and types of domestically produced
agricultural commodities. Policies such as the PIK program and

biofuelmandates appear to have had some impacts onTFPC, but the
general effect of policy has yet to be established, and it is unknown to
what degree it will be able to lessen the negative impacts.
Policies such as trade regulations may have indirect effects on

agriculture. Our analysis found no persistent correlation between
agricultural international trade (as measured by changes in exports,
imports, or trade balance) and TFPC. As TFP is a measure of
production relative to input use, it is unlikely to be directly impacted
by trade. A climate-induced drop in US agricultural TFP could

impact the US ability to meet international demands, particu-
larly for coarse grains, with global impacts on trade. However,
changes in trade are unlikely to be a viable means of reversing
TFP loss.

Lasso Regression Analysis

To reduce overfitting possible in the stepwise regression, we
performed a lasso regression analysis by including all climate
indices (eight for 1981–2010 and four for 1951–1980) and min-
imizing the residual sum of squares. The results differed little
from those based on the stepwise regression. The lasso re-
gression models for 1951–1980 and 1981–2010 are, respectively,

The sequential order of the climate indices (and thus the relative
importance of their contributions) is identical to that of the
stepwise regression models 1 and 2, and the respective coefficients
differ only in the fourth or fifth decimal place. These minimal
differences result simply from the inclusion of the fourth term

(TASON.TX) in 1951–1980 and the eighth term (TADJF.NL) in
1981–2010. The total root-mean-square error between the lasso
and stepwise regression models is 0.000467 for 1951–1980, and
0.001107 for 1981–2010. These errors are negligible compared
with the respective total variances of 0.010 and 0.058. Given that
the last term in both lasso models TFPC[a] and TFPC[b] explains
less than 0.06% of the total variance, we repeated the lasso re-
gression analysis omitting these variables, and the resulting models
were identical to the stepwise regression models.

TFPC½a"= 0.006328 + 0.007243 ·TASON.NA − 0.009420 ·PRSON.TX

− 0.007562 ·TAMAM.CX + 0.000645 ·TASON.TX

TFPC½b"= 0.014865 − 0.0098458 ·TAJJA.AH − 0.023616 ·PRDJF.CY

+ 0.034577 ·PRJJA.TZ − 0.011355 ·PRMAM.CA

− 0.014077 ·TASON.CX − 0.011299 ·TAMAM.SW

+ 0.004521 ·TAJJA.CN − 0.000889 ·TADJF.NL

.
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Fig. S1. The percentage of grids over US land that have significant correlations with TFPC. Each bar represents the value for each of the four climate variables
in every season, during 1951–1980 (Upper) and 1981–2010 (Lower). The statistics are separate for positive (+, red) and negative (−, blue) correlations.
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Fig. S2. The percentage of significant TFPC−climate correlations in each 20-y subperiod, including the percentage of grids in which TFPC significantly cor-
related with temperature (Upper) and the percentage of significant correlations with precipitation (Lower).

Fig. S3. Variations in the contribution of agricultural sectors to total value. Crops make up the majority of US agricultural value, with livestock (including
miscellaneous livestock products not separately identified) seeing a somewhat decreasing role over time, and farm-related goods and services (including
nonagricultural or secondary activities closely related to agricultural production for which information on output and input use cannot be separated) in-
creasing in importance in recent decades.
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Fig. S4. Compound annual TFP growth rate for each RCP. The range of uncertainty due to climate projections is based on the 25th and 75th percentile GCM
results. The dotted lines represent uncertainty in the regression analysis, and are based on 28-y submodels.
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